Project description
In this context, HYPOBATT will be focused on the development of an interoperable charging solution with a cost-competitive performance.
HYPOBATT will deliver a modular, fast, and easy multi-MW recharging system demonstrated in two European ports with fast turnaround times. The project will assess the end-to-end services between both ports, and compatibility with other ports.
A modular approach on electrical and mechanical integration will minimize the required connection time, the charging time, land from port side and the number of components and costs. The charging system will be designed to achieve interoperability and compatibility with different electric ships, grid constraints, components, modularity, logistic and handling, monitoring and safety systems, power flow, maintenance, digitalization/automation, cybersecurity, and human element aspects.
The standardization of the charging modules, the interfaces, and the communication protocol, will scale up the charger based on and on/offshore sides; flexibility of power levels will be addressed and the impacts on the electrical grid infrastructure and on the battery degradation during fast charging will be minimized.
HYPOBATT unites key actors from the European maritime sector to develop and demonstrate the charging system. A key element is to develop business mechanisms to exploit the flexibility of the charging system amongst shipbuilders, integrators, ports and stakeholders. This will enable the wide adoption of the solution, thus increasing Europe’s lead in fast charging systems.
A few more projects
-
Escalate project
Heavy-duty vehicles account for about 25% of EU road transport CO2 emissions and about 6% of total EU emissions. In line with the Paris Agreement and Green Deal targets, Regulation (EU) 2019/1242 setting CO2 emission standards for HDVs (from August 14, 2019) forces the transition to a seamless integration of zero-emission vehicles into fleets.
-
Flexship project
FLEXSHIP will facilitate the transition of the waterborne sector towards climate neutrality by delivering a digital green concept for electrification of vessels consisting of a Green Digital Twin (GDT) for designing fit-for-purpose vessel electrical grid architectures and integrating a large battery capacity system into two existing vessel (DEMO 1 & 2) electrical systems, a compact, low-weight, modular and simple, high-efficiency battery system, and a safe integration guide of the system onboard ensuring system interoperability.